Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Frontiers in bioengineering and biotechnology

Objectives: We developed a 3D U-Net-based deep convolutional neural network for the automatic segmentation of the vertebral cortex. The purpose of this study was to evaluate the accuracy of the 3D U-Net deep learning model. Methods: In this study, a fully automated vertebral cortical segmentation method with 3D U-Net was developed, and ten-fold cross-validation was employed. Through data augmentation, we obtained 1,672 3D images of chest CT scans. Segmentation was performed using a conventional image processing method and manually corrected by a senior radiologist to create the gold standard. To compare the segmentation performance, 3D U-Net, Res U-Net, Ki U-Net, and Seg Net were used to segment the vertebral cortex in CT images. The segmentation performance of 3D U-Net and the other three deep learning algorithms was evaluated using DSC, mIoU, MPA, and FPS. Results: The DSC, mIoU, and MPA of 3D U-Net are better than the other three strategies, reaching 0.71 ± 0.03, 0.74 ± 0.08, and 0.83 ± 0.02, respectively, indicating promising automated segmentation results. The FPS is slightly lower than that of Seg Net (23.09 ± 1.26 vs. 30.42 ± 3.57). Conclusion: Cortical bone can be effectively segmented based on 3D U-net.

Li Yang, Yao Qianqian, Yu Haitao, Xie Xiaofeng, Shi Zeren, Li Shanshan, Qiu Hui, Li Changqin, Qin Jian

2022

3D U-Net, artificial intelligence-AI, cortical separation, deep learning, segmentation