In Journal of the American Medical Informatics Association : JAMIA
OBJECTIVE : This study aims to develop a convolutional neural network-based learning framework called domain knowledge-infused convolutional neural network (DK-CNN) for retrieving clinically similar patient and to personalize the prediction of macrovascular complication using the retrieved patients.
MATERIALS AND METHODS : We use the electronic health records of 169 434 patients with diabetes, hypertension, and/or lipid disorder. Patients are partitioned into 7 subcohorts based on their comorbidities. DK-CNN integrates both domain knowledge and disease trajectory of patients over multiple visits to retrieve similar patients. We use normalized discounted cumulative gain (nDCG) and macrovascular complication prediction performance to evaluate the effectiveness of DK-CNN compared to state-of-the-art models. Ablation studies are conducted to compare DK-CNN with reduced models that do not use domain knowledge as well as models that do not consider short-term, medium-term, and long-term trajectory over multiple visits.
RESULTS : Key findings from this study are: (1) DK-CNN is able to retrieve clinically similar patients and achieves the highest nDCG values in all 7 subcohorts; (2) DK-CNN outperforms other state-of-the-art approaches in terms of complication prediction performance in all 7 subcohorts; and (3) the ablation studies show that the full model achieves the highest nDCG compared with other 2 reduced models.
DISCUSSION AND CONCLUSIONS : DK-CNN is a deep learning-based approach which incorporates domain knowledge and patient trajectory data to retrieve clinically similar patients. It can be used to assist physicians who may refer to the outcomes and past treatments of similar patients as a guide for choosing an effective treatment for patients.
Oei Ronald Wihal, Hsu Wynne, Lee Mong Li, Tan Ngiap Chuan
2022-Nov-07
chronic diseases, convolutional neural network, domain knowledge, patient similarity