In Radiological physics and technology
The purpose of this study was to develop a deep learning model to diagnose breast cancer by embedding a diagnostic algorithm that examines the asymmetry of bilateral breast tissue. This retrospective study was approved by the institutional review board. A total of 115 patients who underwent breast surgery and had pathologically confirmed breast cancer were enrolled in this study. Two image pairs [230 pairs of bilateral breast digital breast tomosynthesis (DBT) images with 115 malignant tumors and contralateral tissue (M/N), and 115 bilateral normal areas (N/N)] were generated from each patient enrolled in this study. The proposed deep learning model is called bilateral asymmetrical detection (BilAD), which is a modified convolutional neural network (CNN) model of Xception with two-dimensional tensors for bilateral breast images. BilAD was trained to classify the differences between pairs of M/N and N/N datasets. The results of the BilAD model were compared to those of the unilateral control CNN model (uCNN). The results of BilAD and the uCNN were as follows: accuracy, 0.84 and 0.75; sensitivity, 0.73 and 0.58; and specificity, 0.93 and 0.92, respectively. The mean area under the receiver operating characteristic curve of BilAD was significantly higher than that of the uCNN (p = 0.02): 0.90 and 0.84, respectively. The proposed deep learning model trained by embedding a diagnostic algorithm to examine the asymmetry of bilateral breast tissue improves the diagnostic accuracy for breast cancer.
Shimokawa Daiki, Takahashi Kengo, Kurosawa Daiya, Takaya Eichi, Oba Ken, Yagishita Kazuyo, Fukuda Toshinori, Tsunoda Hiroko, Ueda Takuya
2022-Nov-07
Artificial intelligence, Breast cancer, Deep learning, Digital breast tomosynthesis, Mammography