Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In BMC bioinformatics

BACKGROUND : Adaptor proteins play a key role in intercellular signal transduction, and dysfunctional adaptor proteins result in diseases. Understanding its structure is the first step to tackling the associated conditions, spurring ongoing interest in research into adaptor proteins with bioinformatics and computational biology. Our study aims to introduce a small, new, and superior model for protein classification, pushing the boundaries with new machine learning algorithms.

RESULTS : We propose a novel transformer based model which includes convolutional block and fully connected layer. We input protein sequences from a database, extract PSSM features, then process it via our deep learning model. The proposed model is efficient and highly compact, achieving state-of-the-art performance in terms of area under the receiver operating characteristic curve, Matthew's Correlation Coefficient and Receiver Operating Characteristics curve. Despite merely 20 hidden nodes translating to approximately 1% of the complexity of previous best known methods, the proposed model is still superior in results and computational efficiency.

CONCLUSIONS : The proposed model is the first transformer model used for recognizing adaptor protein, and outperforms all existing methods, having PSSM profiles as inputs that comprises convolutional blocks, transformer and fully connected layers for the use of classifying adaptor proteins.

Rahardja Sylwan, Wang Mou, Nguyen Binh P, Fränti Pasi, Rahardja Susanto

2022-Nov-04

Adaptor protein, Deep learning, Protein classification, Transformer