Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In RSC advances

In the pursuit of designing van der Waals magnetic tunneling junctions (vdW-MTJs) with two-dimensional (2D) intrinsic magnets, as well as to quantitatively reveal the microscopic nature governing the vertical tunneling pathways beyond the phenomenological descriptions on CrI3-based vdW-MTJs, we investigate the structural configuration, electronic structure and spin-polarized quantum transport of graphene|2 monolayer(2ML)-CrI3|graphene heterostructure with Ag(111) layers as the electrode, using density functional theory (DFT) and its combination of non-equilibrium Green's function (DFT-NEGF) methods. The in-plane lattice of CrI3 layers is found to be stretched when placed on the graphene (Gr) layer, and the layer-stacking does not show any site selectivity. The charge transfer between CrI3 and Gr layers make the CrI3 layer lightly electron-doped, and the Gr layer hole-doped. Excitingly, the inter-layer hybridization between graphene and CrI3 layers render the CrI3 layer metallic in the majority spin channel, giving rise to an insulator-to-half-metal transition. Due to the metallic/insulator characteristics of the spin-majority/minority channel of the 2ML-CrI3 barrier in vdW-MTJs, Gr|2ML-CrI3|Gr heterostructures exhibit an almost perfect spin filtering effect (SFE) near the zero bias in parallel magnetization, a giant tunneling magnetoresistance (TMR) ratio up to 2 × 104%, and remarkable negative differential resistance (NDR). Our results not only give an explanation for the observed giant TMR in CrI3-based MTJs but also show the direct implications of 2D magnets in vdW-heterostructures.

Zhang Yibin, Liu Jie, Deng Renhao, Shi Xuan, Tang Huan, Chen Hong, Yuan Hongkuan

2022-Oct-04