Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computational intelligence and neuroscience

With the development of neuromorphic computing, more and more attention has been paid to a brain-inspired spiking neural network (SNN) because of its ultralow energy consumption and high-performance spatiotemporal information processing. Due to the discontinuity of the spiking neuronal activation function, it is still a difficult problem to train brain-inspired deep SNN directly, so SNN has not yet shown performance comparable to that of an artificial neural network. For this reason, the spike-based approximate backpropagation (SABP) algorithm and a general brain-inspired SNN framework are proposed in this paper. The combination of the two can be used for end-to-end direct training of brain-inspired deep SNN. Experiments show that compared with other spike-based methods of directly training SNN, the classification accuracy of this method is close to the best results on MNIST and CIFAR-10 datasets and achieves the best classification accuracy on sonar image target classification (SITC) of small sample datasets. Further analysis shows that compared with artificial neural networks, our brain-inspired SNN has great advantages in computational complexity and energy consumption in sonar target classification.

Liu Yang, Tian Meng, Liu Ruijia, Cao Kejing, Wang Ruiyi, Wang Yadi, Zhao Wei, Zhou Yi

2022