In Frontiers in aging neuroscience ; h5-index 64.0
Background: Normative brain volume reports (NBVR) are becoming more available in the work-up of patients with suspected dementia disorders, potentially leveraging the value of structural MRI in clinical settings. The present study aims to investigate the impact of NBVRs on the diagnosis of neurodegenerative dementia disorders in real-world clinical practice. Methods: We retrospectively analyzed data of 112 memory clinic patients, who were consecutively referred for MRI and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) during a 12-month period. Structural MRI was assessed by two residents with 2 and 3 years of neuroimaging experience. Statements and diagnostic confidence regarding the presence of a neurodegenerative disorder in general (first level) and Alzheimer's disease (AD) pattern in particular (second level) were recorded without and with NBVR information. FDG-PET served as the reference standard. Results: Overall, despite a trend towards increased accuracy, the impact of NBVRs on diagnostic accuracy was low and non-significant. We found a significant drop of sensitivity (0.75-0.58; p < 0.001) and increase of specificity (0.62-0.85; p < 0.001) for rater 1 at identifying patients with neurodegenerative dementia disorders. Diagnostic confidence increased for rater 2 (p < 0.001). Conclusions: Overall, NBVRs had a limited impact on diagnostic accuracy in real-world clinical practice. Potentially, NBVR might increase diagnostic specificity and confidence of neuroradiology residents. To this end, a well-defined framework for integration of NBVR in the diagnostic process and improved algorithms of NBVR generation are essential.
Hedderich Dennis M, Schmitz-Koep Benita, Schuberth Madeleine, Schultz Vivian, Schlaeger Sarah J, Schinz David, Rubbert Christian, Caspers Julian, Zimmer Claus, Grimmer Timo, Yakushev Igor
2022
Alzheimer’s disease, artificial intelligence—AI, biomarkers, magnetic resonance imaging, neurodegenerative disorder (NDD), positron-emission-tomography