Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In IEEE transactions on neural networks and learning systems

In this article, we focus on a new and challenging decentralized machine learning paradigm in which there are continuous inflows of data to be addressed and the data are stored in multiple repositories. We initiate the study of data-decentralized class-incremental learning (DCIL) by making the following contributions. First, we formulate the DCIL problem and develop the experimental protocol. Second, we introduce a paradigm to create a basic decentralized counterpart of typical (centralized) CIL approaches, and as a result, establish a benchmark for the DCIL study. Third, we further propose a decentralized composite knowledge incremental distillation (DCID) framework to transfer knowledge from historical models and multiple local sites to the general model continually. DCID consists of three main components, namely, local CIL, collaborated knowledge distillation (KD) among local models, and aggregated KD from local models to the general one. We comprehensively investigate our DCID framework by using a different implementation of the three components. Extensive experimental results demonstrate the effectiveness of our DCID framework. The source code of the baseline methods and the proposed DCIL is available at https://github.com/Vision-Intelligence-and-Robots-Group/DCIL.

Zhang Xiaohan, Dong Songlin, Chen Jinjie, Tian Qi, Gong Yihong, Hong Xiaopeng

2022-Oct-31