Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Frontiers in bioinformatics

Predicting the physical or functional associations through protein-protein interactions (PPIs) represents an integral approach for inferring novel protein functions and discovering new drug targets during repositioning analysis. Recent advances in high-throughput data generation and multi-omics techniques have enabled large-scale PPI predictions, thus promoting several computational methods based on different levels of biological evidence. However, integrating multiple results and strategies to optimize, extract interaction features automatically and scale up the entire PPI prediction process is still challenging. Most procedures do not offer an in-silico validation process to evaluate the predicted PPIs. In this context, this paper presents the PredPrIn scientific workflow that enables PPI prediction based on multiple lines of evidence, including the structure, sequence, and functional annotation categories, by combining boosting and stacking machine learning techniques. We also present a pipeline (PPIVPro) for the validation process based on cellular co-localization filtering and a focused search of PPI evidence on scientific publications. Thus, our combined approach provides means to extensive scale training or prediction of new PPIs and a strategy to evaluate the prediction quality. PredPrIn and PPIVPro are publicly available at https://github.com/YasCoMa/predprin and https://github.com/YasCoMa/ppi_validation_process.

Martins Yasmmin Côrtes, Ziviani Artur, Nicolás Marisa Fabiana, de Vasconcelos Ana Tereza Ribeiro

2021

PPI prediction, in-silico validation, large-scale prediction, protein-protein interaction, scientific workflow, text mining