In Journal of imaging
The benefits of autonomous image segmentation are readily apparent in many applications and garners interest from stakeholders in many fields. The wide range of benefits encompass applications ranging from medical diagnosis, where the shape of the grouped pixels increases diagnosis accuracy, to autonomous vehicles where the grouping of pixels defines roadways, traffic signs, other vehicles, etc. It even proves beneficial in many phases of machine learning, where the resulting segmentation can be used as inputs to the network or as labels for training. The majority of the available image segmentation algorithmic development and results focus on visible image modalities. Therefore, in this treatment, the authors present the results of a study designed to identify and improve current semantic methods for infrared scene segmentation. Specifically, the goal is to propose a novel approach to provide tile-based segmentation of occlusion clouds in Long Wave Infrared images. This work complements the collection of well-known semantic segmentation algorithms applicable to thermal images but requires a vast dataset to provide accurate performance. We document performance in applications where the distinction between dust cloud tiles and clear tiles enables conditional processing. Therefore, the authors propose a Gray Level Co-Occurrence Matrix (GLCM) based method for infrared image segmentation. The main idea of our approach is that GLCM features are extracted from local tiles in the image and used to train a binary classifier to provide indication of tile occlusions. Our method introduces a new texture analysis scheme that is more suitable for image segmentation than the solitary Gabor segmentation or Markov Random Field (MRF) scheme. Our experimental results show that our algorithm performs well in terms of accuracy and a better inter-region homogeneity than the pixel-based infrared image segmentation algorithms.
Abuhussein Mohammed, Robinson Aaron
2022-Sep-30
GLCM, Gabor, LWIR, MRF, clouds, infrared, obscurants, occlusion, segmentation, texture, thermal, unsupervised