Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computational intelligence and neuroscience

When exploring facial expression recognition methods, it is found that existing algorithms make insufficient use of information about the key parts that express emotion. For this problem, on the basis of a convolutional neural network and long short-term memory (CNN-LSTM), we propose a facial expression recognition method that incorporates an attention mechanism (CNN-ALSTM). Compared with the general CNN-LSTM algorithm, it can mine the information of important regions more effectively. Furthermore, a CNN-LSTM facial expression recognition method incorporating a two-layer attention mechanism (ACNN-ALSTM) is proposed. We conducted comparative experiments on Fer2013 and processed CK  + datasets with CNN-ALSTM, ACNN-ALSTM, patch based ACNN (pACNN), Facial expression recognition with attention net (FERAtt), and other networks. The results show that the proposed ACNN-ALSTM hybrid neural network model is superior to related work in expression recognition.

Ming Ye, Qian Hu, Guangyuan Liu