Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In International journal of genomics

Assessing the impact of variants of unknown significance on splicing has become a critical issue and a bottleneck, especially with the widespread implementation of whole-genome or exome sequencing. Although multiple in silico tools are available, the interpretation and application of these tools are difficult and practical guidelines are still lacking. A streamlined decision-making process can facilitate the downstream RNA analysis in a more efficient manner. Therefore, we evaluated the performance of 8 in silico tools (Splice Site Finder, MaxEntScan, Splice-site prediction by neural network, GeneSplicer, Human Splicing Finder, SpliceAI, Splicing Predictions in Consensus Elements, and SpliceRover) using 114 NF1 spliceogenic variants, experimentally validated at the mRNA level. The change in the predicted score incurred by the variant of the nearest wild-type splice site was analyzed, and for type II, III, and IV splice variants, the change in the prediction score of de novo or cryptic splice site was also analyzed. SpliceAI and SpliceRover, tools based on deep learning, outperformed all other tools, with AUCs of 0.972 and 0.924, respectively. For de novo and cryptic splice sites, SpliceAI outperformed all other tools and showed a sensitivity of 95.7% at an optimal cut-off of 0.02 score change. Our results show that deep learning algorithms, especially those of SpliceAI, are validated at a significantly higher rate than other in silico tools for clinically relevant NF1 variants. This suggests that deep learning algorithms outperform traditional probabilistic approaches and classical machine learning tools in predicting the de novo and cryptic splice sites.

Jang Woori, Park Joonhong, Chae Hyojin, Kim Myungshin