In Brain and behavior
BACKGROUND : Brain atrophy is an important feature in dementia and is meaningful to explore a brain atrophy model to predict dementia. Using machine learning algorithm to establish a dementia model and cognitive function model based on brain atrophy characteristics is unstoppable.
METHOD : We acquired 157 dementia and 156 normal old people.s clinical information and MRI data, which contains 44 brain atrophy features, including visual scale assessment of brain atrophy and multiple linear measurement indexes and brain atrophy index. Five machine learning models were used to establish prediction models for dementia, general cognition, and subcognitive domains.
RESULTS : The extreme Gradient Boosting (XGBoost) model had the best effect in predicting dementia, with a sensitivity of 0.645, a specificity of 0.839, and the area under curve (AUC) of 0.784. In this model, the important brain atrophy features for predicting dementia were temporal horn ratio, cella media index, suprasellar cistern ratio, and the thickness of the corpus callosum genu.
CONCLUSION : For nonstroke elderly people, the machine learning model based on clinical head MRI brain atrophy features had good predictive value for dementia, general cognitive impairment, immediate memory impairment, word fluency disorder, executive dysfunction, and visualspatial disorder.
Zhang Wei, Zheng Xiaoran, Li Renren, Liu Meng, Xiao Weixin, Huang Lihe, Xu Feiyang, Dong Ningxin, Li Yunxia
2022-Oct-24
brain atrophy, dementia prediction, eXtreme Gradient Boosting, machine learning