Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In BioMed research international ; h5-index 102.0

Traditional Chinese medicine (TCM) is a summary of the diagnosis and treatment experience formed by the working people in the long-term struggle against diseases, so it is very important to protect the intangible cultural heritage of TCM. How to extract valuable knowledge accurately and conveniently from the massive medical records of TCM is one of the important issues in the current research on the development of TCM. Due to the large amount of data of TCM medical records, many feature attributes, and diverse patterns, the existing classification technology has high computational complexity, low mining efficiency, and poor universality. Therefore, this paper proposed to quantify the medical records of TCM and obtained the main symptoms according to the improved hierarchical clustering feature selection algorithm. This paper also proposed a support vector machine (SVM) classification method using improved particle swarm algorithm to classify TCM information, which not only improves the efficiency and accuracy of TCM information classification but also discovers the potential dialectical and symptom patterns in diagnosis and treatment, so that the intangible cultural heritage protection of TCM can be developed sustainably. This paper showed that the information acquisition accuracy of the improved algorithm was very high. Before the improved algorithm was used, the accuracy of information mining for TCM was 67.90% at the highest and 65.53% at the lowest, but after using the improved algorithm, the accuracy rate of information mining for TCM was 88.02% at the highest and 82.45% at the lowest. It can be seen that using the improved algorithm to mine TCM information can quickly process effective information.

Li Yanwei, Liu Ying, Wen Yulong