Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Frontiers in digital health

We are rapidly approaching a future in which cancer patient digital twins will reach their potential to predict cancer prevention, diagnosis, and treatment in individual patients. This will be realized based on advances in high performance computing, computational modeling, and an expanding repertoire of observational data across multiple scales and modalities. In 2020, the US National Cancer Institute, and the US Department of Energy, through a trans-disciplinary research community at the intersection of advanced computing and cancer research, initiated team science collaborative projects to explore the development and implementation of predictive Cancer Patient Digital Twins. Several diverse pilot projects were launched to provide key insights into important features of this emerging landscape and to determine the requirements for the development and adoption of cancer patient digital twins. Projects included exploring approaches to using a large cohort of digital twins to perform deep phenotyping and plan treatments at the individual level, prototyping self-learning digital twin platforms, using adaptive digital twin approaches to monitor treatment response and resistance, developing methods to integrate and fuse data and observations across multiple scales, and personalizing treatment based on cancer type. Collectively these efforts have yielded increased insights into the opportunities and challenges facing cancer patient digital twin approaches and helped define a path forward. Given the rapidly growing interest in patient digital twins, this manuscript provides a valuable early progress report of several CPDT pilot projects commenced in common, their overall aims, early progress, lessons learned and future directions that will increasingly involve the broader research community.

Stahlberg Eric A, Abdel-Rahman Mohamed, Aguilar Boris, Asadpoure Alireza, Beckman Robert A, Borkon Lynn L, Bryan Jeffrey N, Cebulla Colleen M, Chang Young Hwan, Chatterjee Ansu, Deng Jun, Dolatshahi Sepideh, Gevaert Olivier, Greenspan Emily J, Hao Wenrui, Hernandez-Boussard Tina, Jackson Pamela R, Kuijjer Marieke, Lee Adrian, Macklin Paul, Madhavan Subha, McCoy Matthew D, Mohammad Mirzaei Navid, Razzaghi Talayeh, Rocha Heber L, Shahriyari Leili, Shmulevich Ilya, Stover Daniel G, Sun Yi, Syeda-Mahmood Tanveer, Wang Jinhua, Wang Qi, Zervantonakis Ioannis


artificial intelligence, cancer patient, digital twins, machine learning, mathematical modeling, oncology, predictive medicine