Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract

BACKGROUND : Radiomics is an approach to medical imaging that quantifies the features normally translated into visual display. While both radiomic and clinical markers have shown promise in predicting response to neoadjuvant chemoradiation therapy (nCRT) for rectal cancer, the interrelationship is not yet clear.

METHODS : A retrospective, single-institution study of patients treated with nCRT for locally advanced rectal cancer was performed. Clinical and radiomic features were extracted from electronic medical record and pre-treatment magnetic resonance imaging, respectively. Machine learning models were created and assessed for complete response and positive treatment effect using the area under the receiver operating curves.

RESULTS : Of 131 rectal cancer patients evaluated, 68 (51.9%) were identified to have a positive treatment effect and 35 (26.7%) had a complete response. On univariate analysis, clinical T-stage (OR 0.46, p = 0.02), lymphovascular/perineural invasion (OR 0.11, p = 0.03), and statin use (OR 2.45, p = 0.049) were associated with a complete response. Clinical T-stage (OR 0.37, p = 0.01), lymphovascular/perineural invasion (OR 0.16, p = 0.001), and abnormal carcinoembryonic antigen level (OR 0.28, p = 0.002) were significantly associated with a positive treatment effect. The clinical model was the strongest individual predictor of both positive treatment effect (AUC = 0.64) and complete response (AUC = 0.69). The predictive ability of a positive treatment effect increased by adding tumor and mesorectal radiomic features to the clinical model (AUC = 0.73).

CONCLUSIONS : The use of a combined model with both clinical and radiomic features resulted in the strongest predictive capability. With the eventual goal of tailoring treatment to the individual, both clinical and radiologic markers offer insight into identifying patients likely to respond favorably to nCRT.

Peterson Kent J, Simpson Matthew T, Drezdzon Melissa K, Szabo Aniko, Ausman Robin A, Nencka Andrew S, Knechtges Paul M, Peterson Carrie Y, Ludwig Kirk A, Ridolfi Timothy J


Complete response, Machine learning, Neoadjuvant chemoradiation therapy, Rectal cancer, Watch-and-wait