Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Medical image analysis

Domain shift is a problem commonly encountered when developing automated histopathology pipelines. The performance of machine learning models such as convolutional neural networks within automated histopathology pipelines is often diminished when applying them to novel data domains due to factors arising from differing staining and scanning protocols. The Dual-Channel Auto-Encoder (DCAE) model was previously shown to produce feature representations that are less sensitive to appearance variation introduced by different digital slide scanners. In this work, the Multi-Channel Auto-Encoder (MCAE) model is presented as an extension to DCAE which learns from more than two domains of data. Experimental results show that the MCAE model produces feature representations that are less sensitive to inter-domain variations than the comparative StaNoSA method when tested on a novel synthetic dataset. This was apparent when applying the MCAE, DCAE, and StaNoSA models to three different classification tasks from unseen domains. The results of this experiment show the MCAE model out performs the other models. These results show that the MCAE model is able to generalise better to novel data, including data from unseen domains, than existing approaches by actively learning normalised feature representations.

Moyes Andrew, Gault Richard, Zhang Kun, Ming Ji, Crookes Danny, Wang Jing


Deep Learning, Histopathology, Representation Learning, Stain Invariance