Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In IEEE journal of biomedical and health informatics

Falls are an eminent risk for older adults and especially patients with neurodegenerative disorders, such as Parkinson's disease (PD). Recent advancements in wearable sensor technology and machine learning may provide a possibility for an individualized prediction of fall risk based on gait recordings from standardized gait tests or from unconstrained real-world scenarios. However, the most effective aggregation of continuous real-world data as well as the potential of unsupervised gait tests recorded over multiple days for fall risk prediction still need to be investigated. Therefore, we present a data set containing real-world gait and unsupervised 4x10-Meter-Walking-Tests of 40 PD patients, continuously recorded with foot-worn inertial sensors over a period of two weeks. In this prospective study, falls were self-reported during a three-month follow-up phase, serving as ground truth for fall risk prediction. The purpose of this study was to compare different data aggregation approaches and machine learning models for the prospective prediction of fall risk using gait parameters derived either from continuous real-world recordings or from unsupervised gait tests. The highest balanced accuracy of 74.0% (sensitivity: 60.0%, specificity: 88.0%) was achieved with a Random Forest Classifier applied to the real-world gait data when aggregating all walking bouts and days of each participant. Our findings suggest that fall risk can be predicted best by merging the entire two-week real-world gait data of a patient, outperforming the prediction using unsupervised gait tests (68.0% balanced accuracy) and contribute to an improved understanding of fall risk prediction.

Ullrich Martin, Roth Nils, Kuderle Arne, Richer Robert, Gladow Till, Gasner Heiko, Marxreiter Franz, Klucken Jochen, Eskofier Bjoern M, Kluge Felix