Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Orthodontics & craniofacial research

OBJECTIVE : The aim of this study was to develop an artificial intelligence (AI) algorithm to automatically and accurately determine the stage of cervical vertebra maturation (CVM) with the main purpose being to eliminate the human error factor.

SETTING AND SAMPLE POPULATION : Archives of the cephalometric images were reviewed and the data of 1501 subjects with fully visible cervical vertebras were included in this retrospective study.

MATERIALS AND METHODS : Lateral cephalometric (LC) that met the inclusion criteria were used in the training process, labeling was carried out using computer vision annotation tool (CVAT), tracing was done by an experienced orthodontist as a gold standard and, in order to limit the effect of the uneven distribution of the training data set, maturation stage was classified with a modified Bachetti method by the operator who labeled them. The labeled data were split randomly into a training set (80%), a testing set (10%) and an validation set (10%), to measure intra-observer, inter-observer reliability, intraclass correlation coefficient (ICC) and weighted Cohen's kappa test was carried out.

RESULTS : ICC valued at 0.973, weighted Cohen's kappa standard error was 0.870 ± 0.027 which shows high reliability of the observers and excellent level of agreement between them, the segmentation network achieved a global accuracy of 0.99 and average dice score overall images was 0.93. The classification network achieved an accuracy of 0.802, class sensitivity of (pre-pubertal 0.78) (pubertal 0.45) (post-pubertal 0.98) respectively per class specificity of (pre-pubertal 0.94), (pubertal 0.94), (post-pubertal 0.75) respectively.

CONCLUSION : The developed algorithm showed the ability to determine the cervical vertebrae maturation stage which might aid in a faster diagnosis process by eliminating human intervention, which might lead to wrong decision-making procedures that might affect the outcome of the treatment plan. The developed algorithm proved reliable in determining the pre-pubertal and post-pubertal growth stages with high accuracy.

Radwan Mohamad Talal, Sin Çağla, Akkaya Nurullah, Vahdettin Levent


artificial intelligence, cervical vertebrae, deep learning, orthodontics