Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In International journal of wireless information networks

** : In this paper, we compare the direct TOA-based UWB technology with the RSSI-based BLE technology using machine learning algorithms for proximity detection during epidemics in terms of complexity of implementation, availability in existing smart phones, and precision of the results. We establish the theoretical limits on the precision and confidence of proximity estimation for both technologies using the Cramer Rao Lower Bound (CRLB) and validate the theoretical foundations using empirical data gathered in diverse practical operating scenarios. We perform our empirical experiments at eight distances in three flat environments and one non-flat environment encompassing both Line of Sight (LOS) and Obstructed-LOS (OLOS) situations. We also analyze the effects of various postures (eight angles) of the person carrying the sensor, and four on-body locations of the sensor. To estimate the range with BLE RSSI, we use 14 features for training the Gradient Boosted Machines (GBM) learning algorithm and we compare the precision of results with those obtained from memoryless UWB TOA ranging algorithm. We show that the memoryless UWB TOA algorithm achieves 93.60% confidence, slightly outperforming the 92.85% confidence of the BLE RSSI with more complex GBM machine learning (ML) algorithm and the need for substantial training. The training process for the RSSI-based BLE social distance measurements involved 3000 measurements to create a training dataset for each scenario and post-processing of data to extract 14 features of RSSI, and the ML classification algorithm consumed 200 s of computational time. The memoryless UWB ranging algorithm achieves more robust results without any need for training in less than 0.5 s of computation time.

Graphical Abstract :

Su Zhuoran, Pahlavan Kaveh, Agu Emmanuel, Wei Haowen


BLE, COVID-19, Classical estimation theory, Proximity detection, RSSI features, UWB