In Applied optics
Growing nonlinearity demands in mid-infrared applications place more outstanding requirements on fiber structure design. Chalcogenide suspended-core fibers (SCFs) are considered excellent candidates for mid-infrared applications due to their significant advantages in nonlinearity and dispersion management. However, traditional numerical methods for accurate modeling and optimization of SCFs often rely on the performance of computing devices and have many limitations when dealing with complex models. A machine learning algorithm is applied to calculate the optical properties of chalcogenide SCFs, including effective mode area, nonlinear coefficient, and dispersion. The established artificial neural network (ANN) model enables accurate prediction of the above optical properties of As2S3 SCF, for which in the wavelength range of 1.0 to 4.0 µm, the radius of the fiber core is 0.4 to 0.6 µm, and width of the cantilever is 0.06 to 0.09 µm. We demonstrate that this simple ANN model has considerable advantages over the traditional numerical calculation model in computational speed and resource utilization. In summary, the proposed model can quickly provide more accurate optical property predictions, providing a cost-effective solution for precise modeling and optimization of chalcogenide SCFs.
Yuan Shuyu, Chen Shengchao, Yang Jianli, Yang Qian, Ren Sufen, Wang Guanjun, Yu Benguo
2022-Jul-01