Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

ArXiv Preprint

When a deep learning model is sequentially trained on different datasets, it forgets the knowledge acquired from previous data, a phenomenon known as catastrophic forgetting. It deteriorates performance of the deep learning model on diverse datasets, which is critical in privacy-preserving deep learning (PPDL) applications based on transfer learning (TL). To overcome this, we propose review learning (RL), a generative-replay-based continual learning technique that does not require a separate generator. Data samples are generated from the memory stored within the synaptic weights of the deep learning model which are used to review knowledge acquired from previous datasets. The performance of RL was validated through PPDL experiments. Simulations and real-world medical multi-institutional experiments were conducted using three types of binary classification electronic health record data. In the real-world experiments, the global area under the receiver operating curve was 0.710 for RL and 0.655 for TL. Thus, RL was highly effective in retaining previously learned knowledge.

Jaesung Yoo, Sunghyuk Choi, Ye Seul Yang, Suhyeon Kim, Jieun Choi, Dongkyeong Lim, Yaeji Lim, Hyung Joon Joo, Dae Jung Kim, Rae Woong Park, Hyeong-Jin Yoon, Kwangsoo Kim

2022-10-17