Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computers in biology and medicine

The recent investigation has started for evaluating the human respiratory sounds, like voice recorded, cough, and breathing from hospital confirmed Covid-19 tools, which differs from healthy person's sound. The cough-based detection of Covid-19 also considered with non-respiratory and respiratory sounds data related with all declared situations. Covid-19 is respiratory disease, which is usually produced by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). However, it is more indispensable to detect the positive cases for reducing further spread of virus, and former treatment of affected patients. With constant rise in the COVID-19 cases, there has been a constant rise in the need of efficient and safe ways to detect an infected individual. With the cases multiplying constantly, the current detecting devices like RT-PCR and fast testing kits have become short in supply. An effectual Covid-19 detection model using devised hybrid Honey Badger Optimization-based Deep Neuro Fuzzy Network (HBO-DNFN) is developed in this paper. Here, the audio signal is considered as input for detecting Covid-19. The gaussian filter is applied to input signal for removing the noises and then feature extraction is performed. The substantial features, like spectral roll-off, spectral bandwidth, Mel frequency cepstral coefficients (MFCC), spectral flatness, zero crossing rate, spectral centroid, mean square energy and spectral contract are extracted for further processing. Finally, DNFN is applied for detecting Covid-19 and the deep leaning model is trained by designed hybrid HBO algorithm. Accordingly, the developed Hybrid HBO method is newly designed by incorporating Honey Badger optimization Algorithm (HBA) and Jaya algorithm. The performance of developed Covid-19 detection model is evaluated using three metrics, like testing accuracy, sensitivity and specificity. The developed Hybrid HBO-based DNFN is outpaced than other existing approaches in terms of testing accuracy, sensitivity and specificity of "0.9176, 0.9218 and 0. 9219". All the test results are validated with the k-fold cross validation method in order to make an assessment of the generalizability of these results. When k-fold value is 9, sensitivity of existing techniques and developed JHBO-based DNFN is 0.8982, 0.8816, 0.8938, and 0.9207. The sensitivity of developed approach is improved by means of gaussian filtering model. The specificity of DCNN is 0.9125, BI-AT-GRU is 0.8926, and XGBoost is 0.9014, while developed JHBO-based DNFN is 0.9219 in k-fold value 9.

Dar Jawad Ahmad, Srivastava Kamal Kr, Ahmed Lone Sajaad


(SARS-CoV-2) Covid-19 detection, Fuzzy, Hybrid optimization, Mel frequency cepstral coefficients, Neural network, Spectral centroid, Spectral flatness