Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In IEEE transactions on bio-medical engineering

Deep learning (DL)-based automatic sleep staging approaches have attracted much attention recently due in part to their outstanding accuracy. At the testing stage, however, the performance of these approaches is likely to be degraded, when applied in different testing environments, because of the problem of domain shift. This is because while a pre-trained model is typically trained on noise-free electroencephalogram (EEG) signals acquired from accurate medical equipment, deployment is carried out on consumer-level devices with undesirable noise. To alleviate this challenge, in this work, we propose an efficient training approach that is robust against unseen arbitrary noise. In particular, we propose to generate the worst-case input perturbations by means of adversarial transformation in an auxiliary model, to learn a wide range of input perturbations and thereby to improve reliability. Our approach is based on two separate training models: (i) an auxiliary model to generate adversarial noise and (ii) a target network to incorporate the noise signal to enhance robustness. Furthermore, we exploit novel class-wise robustness during the training of the target network to represent different robustness patterns of each sleep stage. Our experimental results demonstrated that our approach improved sleep staging performance on healthy controls, in the presence of moderate to severe noise levels, compared with competing methods. Our approach was able to effectively train and deploy a DL model to handle different types of noise, including adversarial, Gaussian, and shot noise.

Yoo Chaehwa, Liu Xiaofeng, Xing Fangxu, Fakhri Georges El, Woo Jonghye, Kang Je-Won