Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computational intelligence and neuroscience

Tuberculosis (TB) is an airborne disease caused by Mycobacterium tuberculosis. It is imperative to detect cases of TB as early as possible because if left untreated, there is a 70% chance of a patient dying within 10 years. The necessity for supplementary tools has increased in mid to low-income countries due to the rise of automation in healthcare sectors. The already limited resources are being heavily allocated towards controlling other dangerous diseases. Modern digital radiography (DR) machines, used for screening chest X-rays of potential TB victims are very practical. Coupled with computer-aided detection (CAD) with the aid of artificial intelligence, radiologists working in this field can really help potential patients. In this study, progressive resizing is introduced for training models to perform automatic inference of TB using chest X-ray images. ImageNet fine-tuned Normalization-Free Networks (NFNets) are trained for classification and the Score-Cam algorithm is utilized to highlight the regions in the chest X-Rays for detailed inference on the diagnosis. The proposed method is engineered to provide accurate diagnostics for both binary and multiclass classification. The models trained with this method have achieved 96.91% accuracy, 99.38% AUC, 91.81% sensitivity, and 98.42% specificity on a multiclass classification dataset. Moreover, models have also achieved top-1 inference metrics of 96% accuracy and 98% AUC for binary classification. The results obtained demonstrate that the proposed method can be used as a secondary decision tool in a clinical setting for assisting radiologists.

Acharya Vasundhara, Dhiman Gaurav, Prakasha Krishna, Bahadur Pranshu, Choraria Ankit, M Sushobhitha, J Sowjanya, Prabhu Srikanth, Chadaga Krishnaraj, Viriyasitavat Wattana, Kautish Sandeep