Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In BMJ health & care informatics

OBJECTIVES : Few machine learning (ML) models are successfully deployed in clinical practice. One of the common pitfalls across the field is inappropriate problem formulation: designing ML to fit the data rather than to address a real-world clinical pain point.

METHODS : We introduce a practical toolkit for user-centred design consisting of four questions covering: (1) solvable pain points, (2) the unique value of ML (eg, automation and augmentation), (3) the actionability pathway and (4) the model's reward function. This toolkit was implemented in a series of six participatory design workshops with care managers in an academic medical centre.

RESULTS : Pain points amenable to ML solutions included outpatient risk stratification and risk factor identification. The endpoint definitions, triggering frequency and evaluation metrics of the proposed risk scoring model were directly influenced by care manager workflows and real-world constraints.

CONCLUSIONS : Integrating user-centred design early in the ML life cycle is key for configuring models in a clinically actionable way. This toolkit can guide problem selection and influence choices about the technical setup of the ML problem.

Seneviratne Martin G, Li Ron C, Schreier Meredith, Lopez-Martinez Daniel, Patel Birju S, Yakubovich Alex, Kemp Jonas B, Loreaux Eric, Gamble Paul, El-Khoury Kristel, Vardoulakis Laura, Wong Doris, Desai Janjri, Chen Jonathan H, Morse Keith E, Downing N Lance, Finger Lutz T, Chen Ming-Jun, Shah Nigam


Decision Support Systems, Clinical, Machine Learning, Software Design