Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Cancer cell ; h5-index 124.0

In oncology, the patient state is characterized by a whole spectrum of modalities, ranging from radiology, histology, and genomics to electronic health records. Current artificial intelligence (AI) models operate mainly in the realm of a single modality, neglecting the broader clinical context, which inevitably diminishes their potential. Integration of different data modalities provides opportunities to increase robustness and accuracy of diagnostic and prognostic models, bringing AI closer to clinical practice. AI models are also capable of discovering novel patterns within and across modalities suitable for explaining differences in patient outcomes or treatment resistance. The insights gleaned from such models can guide exploration studies and contribute to the discovery of novel biomarkers and therapeutic targets. To support these advances, here we present a synopsis of AI methods and strategies for multimodal data fusion and association discovery. We outline approaches for AI interpretability and directions for AI-driven exploration through multimodal data interconnections. We examine challenges in clinical adoption and discuss emerging solutions.

Lipkova Jana, Chen Richard J, Chen Bowen, Lu Ming Y, Barbieri Matteo, Shao Daniel, Vaidya Anurag J, Chen Chengkuan, Zhuang Luoting, Williamson Drew F K, Shaban Muhammad, Chen Tiffany Y, Mahmood Faisal


AI in oncology, deep learning, deep learning in oncology, multimodal AI, multimodal fusion, multimodal integration