Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Network modeling and analysis in health informatics and bioinformatics

Novel coronavirus is a disease that can propagate easily with very minute carelessness and with very little physical contact between people. Presently, the world's central health institution called the World Health Organization has approved and advised the Reverse Transcription-Polymerase Chain Reaction (RT-PCR) swab test as the most important and effective diagnostic method to confirm if a patient has COVID-19 symptoms or not. This test takes at least a day for revealing the results, depending on the feasible resources in the neighborhood. Moreover, the RT-PCR test gives sometimes false positive results and slow in the process. To keep the potential virus carriers and potential causes of the disease quarantined as early as possible, there is still a requirement for a much faster and more accurate diagnostic process to supplement RT-PCR test of finding the patients affected by the virus. In this regard, radiological images such as X-ray and CT (Computerized Tomography) scan are found to be useful. The X-ray and CT scan have good screening modality; they are quick at capturing and finding and widely available around the world. Therefore, a deep learning model, which makes use of CT scan and X-ray images, has been proposed to automate and analyze the diagnostic process by utilizing Convolutional Neural Network (CNN). This model makes use of InceptionV3 deep learning model, a type of CNN. It is a lightweight deep learning model that is apt for mobile, laptop, and tablet platforms. The proposed model requires low memory space and gives an accuracy of about 96%, sensitivity of 93.48% for CXRs (Chest X-rays) and accuracy of 93%, sensitivity of 89.81 % for the CT scan images respectively. The proposed model is also compared with other deep learning models like VGG 16 (Visual Geometry Group), ResNet50V2 (Residual Network) and other existing deep learning models and it is found to be better in terms of accuracy and other performance parameters. Further, a web application has been developed from the proposed model. The web application is able to detect COVID-19 cases from the CT scan and X-ray images with significant accuracy.

Khurana Batra Payal, Aggarwal Paras, Wadhwa Dheeraj, Gulati Mehul

2022

CT scan, Convolutional Neural Network (CNN), Coronavirus, Deep learning, Prediction, X-ray