Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Expert systems with applications

Early and accurate identification of the balance deficits could reduce falls, in particular for older adults, a prone population. Our work investigates deep neural networks' capacity to identify human balance patterns towards predicting fall-risk. Human balance ability can be characterized based on commonly-used balance metrics, such as those derived from the force-plate time series. We hypothesized that low, moderate, and high risk of falling can be characterized based on balance metrics, derived from the force-plate time series, in conjunction with deep learning algorithms. Further, we predicted that our proposed One-One-One Deep Neural Networks algorithm provides a considerable increase in performance compared to other algorithms. Here, an open source force-plate dataset, which quantified human balance from a wide demographic of human participants (163 females and males aged 18-86) for varied standing conditions (eyes-open firm surface, eyes-closed firm surface, eyes-open foam surface, eyes-closed foam surface) was used. Classification was based on one of the several indicators of fall-risk tied to the fear of falling: the clinically-used Falls Efficacy Scale (FES) assessment. For human fall-risk prediction, the deep learning architecture implemented comprised of: Recurrent Neural Network (RNN), Long-Short Time Memory (LSTM), One Dimensional Convolutional Neural Network (1D-CNN), and a proposed One-One-One Deep Neural Network. Results showed that our One-One-One Deep Neural Networks algorithm outperformed the other aforementioned algorithms and state-of-the-art models on the same dataset. With an accuracy, precision, and sensitivity of 99.9%, 100%, 100%, respectively at the 12th epoch, we found that our proposed One-One-One Deep Neural Network model is the most efficient neural network in predicting human's fall-risk (based on the FES measure) using the force-plate time series signal. This is a novel methodology for an accurate prediction of human risk of fall.

Savadkoohi M, Oladunni T, Thompson L A

2021-Nov-15

Aging, Balance disorder, Balance impairment, C-LSTM, CNN, Deep Learning, Fall-risk, Force-plate, LSTM, Neural Network, RNN