Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Medical image analysis

An important challenge and limiting factor in deep learning methods for medical imaging segmentation is the lack of available of annotated data to properly train models. For the specific task of tumor segmentation, the process entails clinicians labeling every slice of volumetric scans for every patient, which becomes prohibitive at the scale of datasets required to train neural networks to optimal performance. To address this, we propose a novel semi-supervised framework that allows training any segmentation (encoder-decoder) model using only information readily available in radiological data, namely the presence of a tumor in the image, in addition to a few annotated images. Specifically, we conjecture that a generative model performing domain translation on this weak label - healthy vs diseased scans - helps achieve tumor segmentation. The proposed GenSeg method first disentangles tumoral tissue from healthy "background" tissue. The latent representation is separated into (1) the common background information across both domains, and (2) the unique tumoral information. GenSeg then achieves diseased-to-healthy image translation by decoding a healthy version of the image from just the common representation, as well as a residual image that allows adding back the tumors. The same decoder that produces this residual tumor image, also outputs a tumor segmentation. Implicit data augmentation is achieved by re-using the same framework for healthy-to-diseased image translation, where a residual tumor image is produced from a prior distribution. By performing both image translation and segmentation simultaneously, GenSeg allows training on only partially annotated datasets. To test the framework, we trained U-Net-like architectures using GenSeg and evaluated their performance on 3 variants of a synthetic task, as well as on 2 benchmark datasets: brain tumor segmentation in MRI (derived from BraTS) and liver metastasis segmentation in CT (derived from LiTS). Our method outperforms the baseline semi-supervised (autoencoder and mean teacher) and supervised segmentation methods, with improvements ranging between 8-14% Dice score on the brain task and 5-8% on the liver task, when only 1% of the training images were annotated. These results show the proposed framework is ideal at addressing the problem of training deep segmentation models when a large portion of the available data is unlabeled and unpaired, a common issue in tumor segmentation.

Vorontsov Eugene, Molchanov Pavlo, Gazda Matej, Beckham Christopher, Kautz Jan, Kadoury Samuel

2022-Sep-21

Image-to-image translation, Segmentation, Semi-supervised, Weakly supervised