Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Ultrasonics

The segmentation of cardiac chambers and the quantification of clinical functional metrics in dynamic echocardiography are the keys to the clinical diagnosis of heart disease. Identifying the end-diastolic frames (EDFs) and end-systolic frames (ESFs) and manually segmenting the left ventricle in the echocardiographic cardiac cycle before obtaining the left ventricular ejection fraction (LVEF) is a time-consuming and tedious task for clinicians. In this work, we proposed a deep learning-based fully automated echocardiographic analysis method. We proposed a multi-attention efficient feature fusion network (MAEF-Net) to automatically segment the left ventricle. Then, EDFs and ESFs in all cardiac cycles were automatically detected to compute LVEF. The MAEF-Net method used a multi-attention mechanism to guide the network to capture heartbeat features effectively, while suppressing noise, and incorporated deep supervision mechanism and spatial pyramid feature fusion to enhance feature extraction capabilities. The proposed method was validated on the public EchoNet-Dynamic dataset (n = 1226). The Dice similarity coefficient (DSC) of the left ventricular segmentation reached (93.10 ± 2.22)%, and the mean absolute error (MAE) of cardiac phase detection was (2.36 ± 2.23) frames. The MAE for predicting LVEF was 6.29 %. The proposed method was also validated on a private clinical dataset (n = 22). The DSC of the left ventricular segmentation reached (92.81 ± 2.85)%, and the MAE of cardiac phase detection was (2.25 ± 2.27) frames. The MAE for predicting LVEF was 5.91 %, and the Pearson correlation coefficient r reached 0.96. The proposed method may be used as a new method for automatic left ventricular segmentation and quantitative analysis in two-dimensional echocardiography. Our code and trained models will be made available publicly at

Zeng Yan, Tsui Po-Hsiang, Pang Kunjing, Bin Guangyu, Li Jiehui, Lv Ke, Wu Xining, Wu Shuicai, Zhou Zhuhuang


Cardiac phase detection, Deep learning, Echocardiography, Ejection fraction, Left ventricular segmentation