Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Radiology. Artificial intelligence

There are increasing concerns about the bias and fairness of artificial intelligence (AI) models as they are put into clinical practice. Among the steps for implementing machine learning tools into clinical workflow, model development is an important stage where different types of biases can occur. This report focuses on four aspects of model development where such bias may arise: data augmentation, model and loss function, optimizers, and transfer learning. This report emphasizes appropriate considerations and practices that can mitigate biases in radiology AI studies. Keywords: Model, Bias, Machine Learning, Deep Learning, Radiology © RSNA, 2022.

Zhang Kuan, Khosravi Bardia, Vahdati Sanaz, Faghani Shahriar, Nugen Fred, Rassoulinejad-Mousavi Seyed Moein, Moassefi Mana, Jagtap Jaidip Manikrao M, Singh Yashbir, Rouzrokh Pouria, Erickson Bradley J


Bias, Deep Learning, Machine Learning, Model, Radiology