Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computational intelligence and neuroscience

In order to improve the library's ability of cross-platform information retrieval and data scheduling and distribution, a library cross-platform information retrieval system based on digital twin technology is designed. Using data warehouse decision support and data source structured query methods, the spectral characteristics of Library cross-platform information resources are extracted. Using the method of Hadoop data parallel loading, the library cross-platform operation data is divided into decision-making data, computing resource pool data, and Hadoop parallel loading data. A library cross-platform information digital twin parallel retrieval and information fusion feature matching model is established, and the retrieval channels are allocated through multiple complex and balanced task scheduling sequences. According to the queue configuration model of Library cross-platform information retrieval, the optimization design of Library cross-platform information retrieval system is realized. The simulation test results show that the designed system has good recall ability of cross-platform information retrieval data, and improves the utilization rate of cross-platform resources and the dynamic scheduling ability of online resources.

Shang Shanshan, Yu Zikai, Jiao Kun, Huang Yingshi, Guo Hua, Wang Guozhong

2022