Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Artificial intelligence in medicine ; h5-index 34.0

Despite the recent progress in Deep Neural Networks (DNNs) to characterize histopathology images, compactly representing a gigapixel whole-slide image (WSI) via salient features to enable computational pathology is still an urgent need and a significant challenge. In this paper, we propose a novel WSI characterization approach to represent, search and classify biopsy specimens using a compact feature vector (CFV) extracted from a multitude of deep feature vectors. Since the non-optimal design and training of deep networks may result in many irrelevant and redundant features and also cause computational bottlenecks, we proposed a low-cost stochastic method to optimize the output of pre-trained deep networks using evolutionary algorithms to generate a very small set of features to accurately represent each tissue/biopsy. The performance of the proposed method has been assessed using WSIs from the publicly available TCGA image data. In addition to acquiring a very compact representation (i.e., 11,000 times smaller than the initial set of features), the optimized features achieved 93% classification accuracy resulting in 11% improvement compared to the published benchmarks. The experimental results reveal that the proposed method can reliably select salient features of the biopsy sample. Furthermore, the proposed approach holds the potential to immensely facilitate the adoption of digital pathology by enabling a new generation of WSI representation for efficient storage and more user-friendly visualization.

Bidgoli Azam Asilian, Rahnamayan Shahryar, Dehkharghanian Taher, Riasatian Abtin, Kalra Shivam, Zaveri Manit, Campbell Clinton J V, Parwani Anil, Pantanowitz Liron, Tizhoosh H R


Digital pathology, Evolutionary computation, Image representation, Whole slide images