Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Biomedizinische Technik. Biomedical engineering

OBJECTIVES : The leukocyte is a specialized immune cell that functions as the foundation of the immune system and keeps the body healthy. The WBC classification plays a vital role in diagnosing various disorders in the medical area, including infectious diseases, immune deficiencies, leukemia, and COVID-19. A few decades ago, Machine Learning algorithms classified WBC types required for image segmentation, and the feature extraction stages, but this new approach becomes automatic while existing models can be fine-tuned for specific classifications.

METHODS : The inception architecture and deep learning model-based Resnet connection are integrated into this article. Our proposed method, inception Resnet-v3, was used to classify WBCs into five categories using 15.7k images. Pathologists made diagnoses of all images so a model could be trained to classify five distinct types of cells.

RESULTS : After implementing the proposed architecture on a large dataset of 5 categories of human peripheral white blood cells, it achieved high accuracy than VGG, U-Net and Resnet. We tested our model with WBC images from additional public datasets such as the Kaagel data sets and Raabin data sets of which the accuracy was 98.80% and 98.95%.

CONCLUSIONS : Considering the large sample sizes, we believe the proposed method can be used for improving the diagnostic performance of clinical blood examinations as well as a promising alternative for machine learning. Test results obtained with the system have been satisfying, with outstanding values for Accuracy, Precision, Recall, Specificity and F1 Score.

Palanivel Silambarasi, Nallasamy Viswanathan

2022-Oct-05

deep learning, image classification, inception V3, leukocyte, residual network