Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Medical & biological engineering & computing ; h5-index 32.0

The precise assessment of cognitive load during a learning phase is an important pathway to improving students' learning efficiency and performance. Physiological measures make it possible to continuously monitor learners' cognitive load in remote learning during the COVID-19 outbreak. However, maintaining a good balance between performance and computational cost is still a major challenge in advancing cognitive load recognition technology to real-world applications. This paper introduced an adaptive feature recalibration (AFR) convolutional neural network to overcome this challenge by capturing the most discriminative physiological features (EEG and eye-tracking). The results revealed that the optimal average classification accuracy of the feature combination obtained by the AFR method reached 95.56% with only 60 feature dimensions. Additionally, compared with the best result of the conventional correlation-based feature selection (CFS) method, the introduced AFR algorithm achieved higher accuracy and cheaper computational cost, as well as a 2.06% improvement in accuracy and a 51.21% reduction in feature dimension, which is more in line with the requirements of low delay and real-time performance in practical BCI applications.

Wu Chennan, Liu Yang, Guo Xiang, Zhu Tianshui, Bao Zongliang

2022-Oct-05

Cognitive load, Deep learning, EEG, Eye-tracking, Multimodal, Remote learning