Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of medical Internet research ; h5-index 88.0

BACKGROUND : Artificial intelligence (AI) is often heralded as a potential disruptor that will transform the practice of medicine. The amount of data collected and available in health care, coupled with advances in computational power, has contributed to advances in AI and an exponential growth of publications. However, the development of AI applications does not guarantee their adoption into routine practice. There is a risk that despite the resources invested, benefits for patients, staff, and society will not be realized if AI implementation is not better understood.

OBJECTIVE : The aim of this study was to explore how the implementation of AI in health care practice has been described and researched in the literature by answering 3 questions: What are the characteristics of research on implementation of AI in practice? What types and applications of AI systems are described? What characteristics of the implementation process for AI systems are discernible?

METHODS : A scoping review was conducted of MEDLINE (PubMed), Scopus, Web of Science, CINAHL, and PsycINFO databases to identify empirical studies of AI implementation in health care since 2011, in addition to snowball sampling of selected reference lists. Using Rayyan software, we screened titles and abstracts and selected full-text articles. Data from the included articles were charted and summarized.

RESULTS : Of the 9218 records retrieved, 45 (0.49%) articles were included. The articles cover diverse clinical settings and disciplines; most (32/45, 71%) were published recently, were from high-income countries (33/45, 73%), and were intended for care providers (25/45, 56%). AI systems are predominantly intended for clinical care, particularly clinical care pertaining to patient-provider encounters. More than half (24/45, 53%) possess no action autonomy but rather support human decision-making. The focus of most research was on establishing the effectiveness of interventions (16/45, 35%) or related to technical and computational aspects of AI systems (11/45, 24%). Focus on the specifics of implementation processes does not yet seem to be a priority in research, and the use of frameworks to guide implementation is rare.

CONCLUSIONS : Our current empirical knowledge derives from implementations of AI systems with low action autonomy and approaches common to implementations of other types of information systems. To develop a specific and empirically based implementation framework, further research is needed on the more disruptive types of AI systems being implemented in routine care and on aspects unique to AI implementation in health care, such as building trust, addressing transparency issues, developing explainable and interpretable solutions, and addressing ethical concerns around privacy and data protection.

Sharma Malvika, Savage Carl, Nair Monika, Larsson Ingrid, Svedberg Petra, Nygren Jens M


artificial intelligence, health care, implementation, scoping review, technology adoption