Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In European radiology ; h5-index 62.0

OBJECTIVES : To compare image quality between a deep learning image reconstruction (DLIR) algorithm and conventional iterative reconstruction (IR) algorithms in dual-energy CT (DECT) and to assess the impact of these algorithms on radiomics robustness.

METHODS : A phantom with clinical-relevant densities was imaged on seven DECT scanners with the same voxel size using typical abdominal-pelvis examination protocols. On one DECT scanner, raw data were reconstructed using both conventional IR (adaptive statistical iterative reconstruction-V, ASIR-V) and DLIR. Nine sets of corresponding images were generated on other six DECT scanners using scanner-equipped conventional IR. Regions of interest were delineated through rigid registrations. Image quality was compared. Pyradiomics platform was used for radiomics feature extraction. Test-retest repeatability was assessed by Bland-Altman analysis for repeated scans. Inter-reconstruction algorithm reproducibility between conventional IR and DLIR was tested by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). Inter-scanner reproducibility was evaluated by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). Robust features were identified.

RESULTS : DLIR significantly improved image quality. Ninety-four radiomics features were extracted and nine features were considered as robust. 93.87% features were repeatable between repeated scans. ASIR-V images showed higher reproducibility to other conventional IR than DLIR (ICC mean, 0.603 vs 0.558, p = 0.001; CCC mean, 0.554 vs 0.510, p = 0.004). 7.45% and 26.83% features were reproducible among scanners evaluated by CV and QCD, respectively.

CONCLUSIONS : DLIR improves quality of DECT images but may alter radiomics features compared to conventional IR. Nine robust DECT radiomics features were identified.

KEY POINTS : • DLIR improves DECT image quality in terms of signal-to-noise ratio and contrast-to-noise ratio compared with ASIR-V and showed the highest noise reduction rate and lowest peak frequency shift. • Most of radiomics features are repeatable between repeated DECT scans, while inter-reconstruction algorithm reproducibility between conventional IR and DLIR, and inter-scanner reproducibility, are low. • Although DLIR may alter radiomics features compared to IR algorithms, nine radiomics features survived repeatability and reproducibility analysis among DECT scanners and reconstruction algorithms, which allows further validation and clinical-relevant analysis.

Zhong Jingyu, Xia Yihan, Chen Yong, Li Jianying, Lu Wei, Shi Xiaomeng, Feng Jianxing, Yan Fuhua, Yao Weiwu, Zhang Huan

2022-Oct-05

Deep learning, Image enhancement, Image reconstruction, Multidetector computed tomography, Reproducibility of results