In Microbiological research
Microbial cells attached to inert or living surfaces adopt biofilm mode with self-produced exopolysaccharide matrix containing polysaccharides, proteins, and extracellular DNA, for protection from adverse external stimuli. Biofilms in hospitals and industries serve as a breeding ground for drug-resistant pathogens and ARG enrichment that are linked to pathogenicity and also impede industrial production process. Biofilm formation, including virulence and pathogenicity, is regulated through quorum sensing (QS), a means of bacterial cell to cell communication for cooperative physiological processes. Hence, QS inhibition through quorum quenching (QQ) is a feasible approach to inhibit biofilm formation. In contrast, biofilms have beneficial roles in promoting plant growth, biocontrol, and wastewater treatment. Furthermore, polymicrobial biofilms can harbour novel compounds and species of industrial and pharmaceutical interest. Hence, surveillance of biofilm microbiome structure and functional attributes is crucial to determine the extent of the risk it poses and to harness its bioactive potential. One of the most preferred approaches to delineate the microbiome is culture-independent metagenomics. In this context, this review article explores the biofilm microbiome in built and natural settings such as agriculture, household appliances, wastewater treatment plants, hospitals, microplastics, and dental biofilm. We have also discussed the recent reports on discoveries of novel QS and biofilm inhibitors through conventional, metagenomics, and machine learning approaches. Finally, we present biofilm-derived novel metagenome-assembled genomes (MAGs), genomes, and taxa of medical and industrial interest.
Imchen Madangchanok, Anju V T, Busi Siddhardha, Mohan Mahima S, Subhaswaraj Pattnaik, Dyavaiah Madhu, Kumavath Ranjith
2022-Sep-21
Antibiotic resistance genes, Biofilm, Metagenome-assembled genomes, Metagenomics, Quorum sensing