In Biomedical optics express
A time-domain fluorescence molecular tomography in reflective geometry (TD-rFMT) has been proposed to circumvent the penetration limit and reconstruct fluorescence distribution within a 2.5-cm depth regardless of the object size. In this paper, an end-to-end encoder-decoder network is proposed to further enhance the reconstruction performance of TD-rFMT. The network reconstructs both the fluorescence yield and lifetime distributions directly from the time-resolved fluorescent signals. According to the properties of TD-rFMT, proper noise was added to the simulation training data and a customized loss function was adopted for self-supervised and supervised joint training. Simulations and phantom experiments demonstrate that the proposed network can significantly improve the spatial resolution, positioning accuracy, and accuracy of lifetime values.
Cheng Jiaju, Zhang Peng, Liu Fei, Liu Jie, Hui Hui, Tian Jie, Luo Jianwen
2022-Sep-01