Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Quantitative imaging in medicine and surgery

Background : The proposed algorithm could support accurate localization of lung disease. To develop and validate an automated deep learning model combined with a post-processing algorithm to segment six pulmonary anatomical regions in chest computed tomography (CT) images acquired during positron emission tomography/computed tomography (PET/CT) scans. The pulmonary regions have five pulmonary lobes and airway trees.

Methods : Patients who underwent both PET/CT imaging with an extra chest CT scan were retrospectively enrolled. The pulmonary segmentation of six regions in CT was performed via a convolutional neural network (CNN) of DenseVNet architecture with some post-processing algorithms. Three evaluation metrics were used to assess the performance of this method, which combined deep learning and the post-processing method. The agreement between the combined model and ground truth segmentations in the test set was analyzed.

Results : A total of 640 cases were enrolled. The combined model, which involved deep learning and post-processing methods, had a higher performance than the single deep learning model. In the test set, the all-lobes overall Dice coefficient, Hausdorff distance, and Jaccard coefficient were 0.972, 12.025 mm, and 0.948, respectively. The airway-tree Dice coefficient, Hausdorff distance, and Jaccard coefficient were 0.849, 32.076 mm, and 0.815, respectively. A good agreement was observed between our segmentation in every plot.

Conclusions : The proposed model combining two methods can automatically segment five pulmonary lobes and airway trees on chest CT imaging in PET/CT. The performance of the combined model was higher than the single deep learning model in each region in the test set.

Xing Haiqun, Zhang Xin, Nie Yingbin, Wang Sicong, Wang Tong, Jing Hongli, Li Fang


Positron emission tomography/computed tomography (PET/CT), airway trees, deep learning, post-processing, pulmonary lobe