Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Multimedia tools and applications

Diabetes is a long-term condition in which the pancreas quits producing insulin or the body's insulin isn't utilised properly. One of the signs of diabetes is Diabetic Retinopathy. Diabetic retinopathy is the most prevalent type of diabetes, if remains unaddressed, diabetic retinopathy can affect all diabetics and become very serious, raising the chances of blindness. It is a chronic systemic condition that affects up to 80% of patients for more than ten years. Many researchers believe that if diabetes individuals are diagnosed early enough, they can be rescued from the condition in 90% of cases. Diabetes damages the capillaries, which are microscopic blood vessels in the retina. On images, blood vessel damage is usually noticeable. Therefore, in this study, several traditional, as well as deep learning-based approaches, are reviewed for the classification and detection of this particular diabetic-based eye disease known as diabetic retinopathy, and also the advantage of one approach over the other is also described. Along with the approaches, the dataset and the evaluation metrics useful for DR detection and classification are also discussed. The main finding of this study is to aware researchers about the different challenges occurs while detecting diabetic retinopathy using computer vision, deep learning techniques. Therefore, a purpose of this review paper is to sum up all the major aspects while detecting DR like lesion identification, classification and segmentation, security attacks on the deep learning models, proper categorization of datasets and evaluation metrics. As deep learning models are quite expensive and more prone to security attacks thus, in future it is advisable to develop a refined, reliable and robust model which overcomes all these aspects which are commonly found while designing deep learning models.

Dubey Shradha, Dixit Manish


Diabetic retinopathy, Exudate, Hemorrhages, Microaneurysms, Optic disc/ cup, Retinal blood vessel