Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computer methods and programs in biomedicine

Medical image segmentation is a crucial step in the clinical applications for diagnosis and analysis of some diseases. U-Net-based convolution neural networks have achieved impressive performance in medical image segmentation tasks. However, the multi-level contextual information integration capability and the feature extraction ability are often insufficient. In this paper, we present a novel multi-level context fusion network (MCF-Net) to improve the performance of U-Net on various segmentation tasks by designing three modules, hybrid attention-based residual atrous convolution (HARA) module, multi-scale feature memory (MSFM) module, and multi-receptive field fusion (MRFF) module, to fuse multi-scale contextual information. HARA module was proposed to effectively extract multi-receptive field features by combing atrous spatial pyramid pooling and attention mechanism. We further design the MSFM and MRFF modules to fuse features of different levels and effectively extract contextual information. The proposed MCF-Net was evaluated on the ISIC 2018, DRIVE, BUSI, and Kvasir-SEG datasets, which have challenging images of many sizes and widely varying anatomy. The experimental results show that MCF-Net is very competitive with other U-Net models, and it offers tremendous potential as a general-purpose deep learning model for 2D medical image segmentation.

Liu Lizhu, Liu Yexin, Zhou Jian, Guo Cheng, Duan Huigao


Deep learning, Hybrid attention-based residual atrous convolution module, MCF-Net, Medical image segmentation, Multi-receptive field fusion module, Multi-scale feature memory module, U-Net