Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Frontiers in immunology ; h5-index 100.0

One of the primary tasks in vaccine design and development of immunotherapeutic drugs is to predict conformational B-cell epitopes corresponding to primary antibody binding sites within the antigen tertiary structure. To date, multiple approaches have been developed to address this issue. However, for a wide range of antigens their accuracy is limited. In this paper, we applied the transfer learning approach using pretrained deep learning models to develop a model that predicts conformational B-cell epitopes based on the primary antigen sequence and tertiary structure. A pretrained protein language model, ESM-1v, and an inverse folding model, ESM-IF1, were fine-tuned to quantitatively predict antibody-antigen interaction features and distinguish between epitope and non-epitope residues. The resulting model called SEMA demonstrated the best performance on an independent test set with ROC AUC of 0.76 compared to peer-reviewed tools. We show that SEMA can quantitatively rank the immunodominant regions within the SARS-CoV-2 RBD domain. SEMA is available at and the web-interface

Shashkova Tatiana I, Umerenkov Dmitriy, Salnikov Mikhail, Strashnov Pavel V, Konstantinova Alina V, Lebed Ivan, Shcherbinin Dmitriy N, Asatryan Marina N, Kardymon Olga L, Ivanisenko Nikita V


GVP, antibody - antigen complex, conformational B-cell epitopes, epitopes, protein language model, transfer learning, transformer