Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Biomedical signal processing and control

Automatic segmentation of infected regions in computed tomography (CT) images is necessary for the initial diagnosis of COVID-19. Deep-learning-based methods have the potential to automate this task but require a large amount of data with pixel-level annotations. Training a deep network with annotated lung cancer CT images, which are easier to obtain, can alleviate this problem to some extent. However, this approach may suffer from a reduction in performance when applied to unseen COVID-19 images during the testing phase, caused by the difference in the image intensity and object region distribution between the training set and test set. In this paper, we proposed a novel unsupervised method for COVID-19 infection segmentation that aims to learn the domain-invariant features from lung cancer and COVID-19 images to improve the generalization ability of the segmentation network for use with COVID-19 CT images. First, to address the intensity difference, we proposed a novel data augmentation module based on Fourier Transform, which transfers the annotated lung cancer data into the style of COVID-19 image. Secondly, to reduce the distribution difference, we designed a teacher-student network to learn rotation-invariant features for segmentation. The experiments demonstrated that even without getting access to the annotations of the COVID-19 CT images during the training phase, the proposed network can achieve a state-of-the-art segmentation performance on COVID-19 infection.

Chen Han, Jiang Yifan, Ko Hanseok, Loew Murray


COVID-19, Computed tomography, Fourier Transform, Infection segmentation, Teacher–student network