In Scientific data
Glioblastoma is often subdivided into three transcriptional subtypes (classical, proneural, mesenchymal) based on bulk RNA signatures that correlate with distinct genetic and clinical features. Potential cellular-level differences of these subgroups, such as the relative proportions of glioblastoma's hallmark histopathologic features (e.g. brain infiltration, microvascular proliferation), may provide insight into their distinct phenotypes but are, however, not well understood. Here we leverage machine learning and reference proteomic profiles derived from micro-dissected samples of these major histomorphologic glioblastoma features to deconvolute and estimate niche proportions in an independent proteogenomically-characterized cohort. This approach revealed a strong association of the proneural transcriptional subtype with a diffusely infiltrating phenotype. Similarly, enrichment of a microvascular proliferation proteomic signature was seen within the mesenchymal subtype. This study is the first to link differences in the cellular pathology signatures and transcriptional profiles of glioblastoma, providing potential new insights into the genetic drivers and poor treatment response of specific subsets of glioblastomas.
Lam K H Brian, Diamandis Phedias
2022-Oct-01