Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In IEEE ... International Conference on Rehabilitation Robotics : [proceedings]

Computer vision can be used in robotic exoskeleton control to improve transitions between different locomotion modes through the prediction of future environmental states. Here we present the development of a large-scale automated stair recognition system powered by convolutional neural networks to recognize indoor and outdoor real-world stair environments. Building on the ExoNet database- the largest and most diverse open-source dataset of wearable camera images of walking environments-we designed a new computer vision dataset, called StairNet, specifically for stair recognition with over 515,000 images. We then developed and optimized an efficient deep learning model for automatic feature engineering and image classification. Our system was able to accurately predict complex stair environments with 98.4% classification accuracy. These promising results present an opportunity to increase the autonomy and safety of human-exoskeleton locomotion for real-world community mobility. Future work will explore the mobile deployment of our automated stair recognition system for onboard real-time inference.

Kurbis Andrew Garrett, Laschowski Brokoslaw, Mihailidis Alex