Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In International journal of molecular sciences ; h5-index 102.0

Usefulness of Vaccine-Adverse Event-Reporting System (VAERS) data and protocols required for statistical analyses were pinpointed with a set of recommendations for the application of machine learning modeling or exploratory analyses on VAERS data with a case study of COVID-19 vaccines (Pfizer-BioNTech, Moderna, Janssen). A total of 262,454 duplicate reports (29%) from 905,976 reports were identified, which were merged into a total of 643,522 distinct reports. A customized online survey was also conducted providing 211 reports. A total of 20 highest reported adverse events were first identified. Differences in results after applying various machine learning algorithms (association rule mining, self-organizing maps, hierarchical clustering, bipartite graphs) on VAERS data were noticed. Moderna reports showed injection-site-related AEs of higher frequencies by 15.2%, consistent with the online survey (12% higher reporting rate for pain in the muscle for Moderna compared to Pfizer-BioNTech). AEs {headache, pyrexia, fatigue, chills, pain, dizziness} constituted >50% of the total reports. Chest pain in male children reports was 295% higher than in female children reports. Penicillin and sulfa were of the highest frequencies (22%, and 19%, respectively). Analysis of uncleaned VAERS data demonstrated major differences from the above (7% variations). Spelling/grammatical mistakes in allergies were discovered (e.g., ~14% reports with incorrect spellings for penicillin).

Flora James, Khan Wasiq, Jin Jennifer, Jin Daniel, Hussain Abir, Dajani Khalil, Khan Bilal


COVID-19, VAERS, adverse events, association rule mining, bipartite graphs, hierarchical clustering, self-organizing maps, vaccine analysis workflow, vaccine development