Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computer methods and programs in biomedicine

BACKGROUND AND OBJECTIVE : The ever-mutating COVID-19 has infected billions of people worldwide and seriously affected the stability of human society and the world economic development. Therefore, it is essential to make long-term and short-term forecasts for COVID-19. However, the pandemic situation in different countries and regions may be dominated by different virus variants, and the transmission capacity of different virus variants diversifies. Therefore, there is a need to develop a predictive model that can incorporate mutational information to make reasonable predictions about the current pandemic situation.

METHODS : This paper proposes a deep learning prediction framework, VOC-DL, based on Variants Of Concern (VOC). The framework uses slope feature method to process the time series dataset containing VOC variant information, and uses VOC-LSTM, VOC-GRU and VOC-BILSTM prediction models included in the framework to predict the daily newly confirmed cases.

RESULTS : We analyzed daily newly confirmed cases in Italy, South Korea, Russia, Japan and India from April 14th, 2021 to July 3rd, 2021. The experimental results show that all VOC-DL models proposed in this paper can accurately predict the pandemic trend in the medium and long term, and VOC-LSTM model has the best prediction performance, with the highest average determination coefficient R2 of 96.83% in five nations' datasets. The overall prediction has robustness.

CONCLUSIONS : The experimental results show that VOC-LSTM is the best predictor for such a series of data and has higher prediction accuracy in the long run. At the same time, our VOC-DL framework combining VOC variants has reference significance for predicting other variants in the future.

Liao Zhifang, Song Yucheng, Ren Shengbing, Song Xiaomeng, Fan Xiaoping, Liao Zhining


COVID-19, LSTM, Prediction, Time series, VOC-DL model, Variant