Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In IEEE reviews in biomedical engineering

Despite the myriad peer-reviewed papers demonstrating novel Artificial Intelligence (AI)-based solutions to COVID-19 challenges during the pandemic, few have made a significant clinical impact, especially in diagnosis and disease precision staging. One major cause for such low impact is the lack of model transparency, significantly limiting the AI adoption in real clinical practice. To solve this problem, AI models need to be explained to users. Thus, we have conducted a comprehensive study of Explainable Artificial Intelligence (XAI) using PRISMA technology. Our findings suggest that XAI can improve model performance, instill trust in the users, and assist users in decision-making. In this systematic review, we introduce common XAI techniques and their utility with specific examples of their application. We discuss the evaluation of XAI results because it is an important step for maximizing the value of AI-based clinical decision support systems. Additionally, we present the traditional, modern, and advanced XAI models to demonstrate the evolution of novel techniques. Finally, we provide a best practice guideline that developers can refer to during the model experimentation. We also offer potential solutions with specific examples for common challenges in AI model experimentation. This comprehensive review, hopefully, can promote AI adoption in biomedicine and healthcare.

Giuste Felipe, Shi Wenqi, Zhu Yuanda, Naren Tarun, Isgut Monica, Sha Ying, Tong Li, Gupte Mitali, D Wang May